
FACULTY OF ENGINEERING & TECHNOLOGY

Manisha Verma
Assistant Professor

Computer Science & Engineering

Lecturer-11

BCS-501 Operating System

Background
Peterson’s Solution
Synchronization Hardware

Synchronization

•To present the concept of process synchronization.

•To introduce the critical-section problem, whose solutions can be used to ensure the consistency of shared data

•To present both software and hardware solutions of the critical-section problem

•To examine several classical process-synchronization problems

•To explore several tools that are used to solve process synchronization problems

Synchronization

•Processes can execute concurrently

•May be interrupted at any time, partially completing execution

•Concurrent access to shared data may result in data inconsistency

•Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes

•Illustration of the problem:

Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers. We can do so by

having an integer counter that keeps track of the number of full buffers. Initially, counter is set to 0. It is incremented by

the producer after it produces a new buffer and is decremented by the consumer after it consumes a buffer.

Background

Peterson’s Solution

•Good algorithmic description of solving the problem

•Two process solution
Assume that the load and store machine-language instructions are atomic; that is, cannot be interrupted.

The two processes share two variables:
int turn;
Boolean flag[2]

The variable turn indicates whose turn it is to enter the critical section
The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true implies that process Pi

is ready!

do {

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = I

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Solution (Cont.)

Synchronization Hardware

Many systems provide hardware support for implementing the critical section code.

All solutions below based on idea of locking
Protecting critical regions via locks

Uniprocessors – could disable interrupts
Currently running code would execute without preemption
Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

Modern machines provide special atomic hardware instructions
Atomic = non-interruptible

Either test memory word and set value
Or swap contents of two memory words

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

To enforce ………………….. two functions are provided enter-critical and exit-critical, where each function takes as

an argument the name of the resource that is the subject of competition.

A) Mutual Exclusion

B) Synchronization

C) Deadlock

D) Starvation

In ………………. only one process at a time is allowed into its critical section, among all processes that have critical

sections for the same resource.

A) Mutual Exclusion

B) Synchronization

C) Deadlock

D) Starvation

MCQ

Which of the following is/are the disadvantages of machine instruction approach to enforce mutual exclusion.

i) Busy waiting employees ii) hard to verify iii) starvation is possible iv) Deadlock is possible

A) i, ii and iii only

B) ii, iii and iv only

C) i, iii and iv only

D) All i, ii, iii and iv

……………………. techniques can be use to resolve conflicts, such as competition for resources, and synchronize

processes so that they can co-operate.

A) Mutual Exclusion

B) Synchronization

C) Deadlock

D) Starvation

